K24U 2750

Reg. N	10	٠.	:	•	••	•	•••	•	•••	••	•	•	••	•	•	•	•	•	•	••	•	•	•	 •	•	•
Name	:																									

V Semester B.Sc. Degree (CBCSS – OBE – Regular /Supplementary/ Improvement) Examination, November 2024 (2019 to 2022 Admissions) CORE COURSE IN MATHEMATICS

5B05 MAT: Set Theory, Theory of Equations and Complex Numbers

Time: 3 Hours Max. Marks: 48

SECTION - A

Answer any four questions from this Part. Each question carries 1 mark each. (4×1=4)

- 1. Does the set $S = \{1, 4, 9, 16, ...\}$ is denumerable? Justify your answer.
- 2. Find the cubic equation whose roots are 1, -1, 2.
- 3. If α , β are the roots of the equation $x^2 5x + 17 = 0$. Write down the value of $\alpha^2 + \beta^2$.
- 4. Show that 2 is a double root of the equation $x^3 4x^2 + 4x = 0$.
- 5. Find arg(Z) if Z = 1 + i.

SECTION - B

Answer any eight questions from the following. Each question carries 2 marks. (8×2 =16)

- 6. Show that the set of all negative integers is countable.
- 7. If $1/\alpha$, β , γ are the roots of the equation $x^3 + ax^2 + bx + c = 0$. Find the equation whose roots are $1/\alpha$, $1/\beta$, $1/\gamma$.
- 8. Solve $2x^3 + x^2 7x 6 = 0$, given that difference between two of the roots is 3.

- 9. Solve $4x^3 24x^2 + 23x + 18 = 0$ given that the roots are in arithmetical progression.
- 10. q, r, s are positive. Show that the equation $x^4 + qx^2 + rx s = 0$ has one positive, one negative and two imaginary roots.
- 11. State The Descarte's rule of signs.
- 12. State the general form of De Movier's Theorem.
- 13. Solve the equation $x^3 = 1$.
- 14. Using De moviers theorem find (1+ i)4.
- 15. Does the equation $2x^2 5x + 2 = 0$ is a reciprocal equation? Justify your answer.
- 16. Given that ω is a cube root of unity. Show that $\omega^2 + \omega + 1 = 0$

SECTION - C

Answer any four questions. Each question carries 4 marks each.

 $(4 \times 4 = 16)$

- 17. Show that the set of real numbers R is uncountable.
- 18. Show that every equation of nth degree has exactly n roots.
- 19. Prove the following : If α_1 , α_2 , ..., α_n are the roots of the equation $x^n + p_1 x^{n-1} + p_2 x^{n-2} + ... + p_n = 0$ then sums of the products of α_1 , α_2 , ..., α_n taken one, two,, n at a time, are respectively equal to $-p_1$, p_2 , ..., $(-1)^n p_n$.
- 20. α , β , γ are the roots of $x^3-x-1=0$. Find the equation whose roots are $\frac{1+\alpha}{1-\alpha}, \frac{1+\beta}{1-\beta}, \frac{1+\gamma}{1-\gamma}$. Hence write down the value of $\Sigma(1+\alpha)/(1-\alpha)$.
- 21. Solve $4x^4 4x^3 13x^2 + 9x + 9 = 0$, given that sum of two roots is zero.
- 22. If all the roots of $ax^3 + 3bx^2 + 3cx + d = 0$ are real, show that the equation can be reduced to $t^3 t + \mu = 0$, where $27 \mu^2 < 4$, by a substitution of the form x = p + qt, where p and q are real.
- 23. Find the value of $\sqrt{-8-6i}$.

Answer any two questions. Each question carries 6 marks each.

 $(2 \times 6 = 12)$

- 24. a) Given that A and B are countable sets. Show that A \cup B is countable.
 - b) State Cantor's Theorem.
- 25. Find the rational roots of the equation $6x^4 25x^3 + 26x^2 + 4x 8 = 0$.
- 26. Transform the equations

- a) $x^3 6x^2 + 4x 7 = 0$ lacking the second term.
- b) $x^4 \frac{5}{6}x^3 + \frac{5}{12}x^2 \frac{7}{150}x \frac{13}{900} = 0$ with integral coefficients.
- 27. Find the seventh roots of -1.